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ABSTRACT: Homojunctions and homosuperlattices are essen-
tial structures and have been widely explored for use in
advanced electronic and optoelectronic devices. However,
artificially manipulating crystalline phases in two-dimensional
(2D) monolayers is still challenging, especially when attempting
to engineer lateral homogeneous junctions in a single
monolayer of transition metal dichalcogenides (TMDs). Herein,
we demonstrate a lateral homosuperlattice (MLHS) with
alternating 1T and 2H domains in a 2D WS2 monolayer
plane. In MLHSs, the 2H domains, which are laterally localized
and isolated by potential wells, manifest junction interfaces and
irradiated photoluminescence (PL) with a lateral periodic
distribution in the two-dimensional plane. The studies on MLHSs here can provide further understanding of lateral
homojunctions and homosuperlattices in a monolayer plane, providing an alternative route to modulate optical and electronic
behaviors in TMD monolayers.
KEYWORDS: WS2, homosuperlattices, 1T and 2H phases, potential wells, photoluminescence

Homojunctions, heterojunctions, and correlated super-
lattices are fundamental elements in modern
photonics and electronics.1−4 Dense integration,

obtaining superlative performance, and downscaling remain
pressing challenges for homo/heterojunction devices. Recently,
2D homo/heterostructures (e.g., graphene, TMDs) have
shown great potential in the fields of physical research and
advanced optoelectronic devices.2−10 Specifically, artificial
manipulations of the crystalline phases and superlattices of
2D materials have been successfully exploited to produce
devices with better integration10,11 and perform-
ance.1−4,7−9,12−16 TMDs stacking structures have been used
to realize high carrier mobility and rapid on/off response in
functional materials and devices. However, in spite of the
progress made, it is still challenging and of the utmost necessity
to control the integration precisely, inner interfaces, and band
offsets of lateral and vertical homogeneous structures.2,7,13

Aiming at these goals, many efforts have been made on
thickness modulation, doping, and phase engineering13,14,17−21

to realize lateral homojunctions,22 composition-dependent
phase variations,23 and ohmic homomorphic contacts.24

Phase engineering is a well-known and robust way to
effectively modulate the lattices and physical properties (e.g.,
band structure and phonon vibration) of homostructural
materials.25,26 Nevertheless, it is still urgent in the 2D
community to understand and explore 2D lateral homo-
junctions and superlattices on the horizontal plane. Existing
strategies, including ion intercalation,13 laser irradiation18,24

and electron beam induction,19 have been used to engineer
TMD homostructures. To the best of our knowledge, few
attempts have been made to achieve difficult engineering of 2D
monolayer lateral homosuperlattices (MLHSs), where various
arranged phases spontaneously form in a monolayer plane of
TMDs. Herein, we demonstrate a MLHS with alternating 1T
and 2H phases in a WS2 single layer. The MLHSs demonstrate
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a lateral periodic distribution of photoluminescence and
junction interfaces originating from alternating arrangement
of semiconductor phases (2H) and metal phases (1T) in the
monolayer plane. The localized electrons in the 2H phases and
the surface potential distributions lead to enhanced radiation
recombination in the MLHSs with alternating 2H and 1T
phases. The emergence of MLHSs in ML-WS2 will provide a
better in-depth understanding of 2D lateral homojunctions and
associated optical and optoelectronic behaviors.

RESULTS AND DISCUSSION

Understanding and constructing lateral homojunctions and
MLHSs in a monolayer is always a fundamentally challenging
task. Figure 1 shows the concept and illustration of MLHSs
with an alternating arrangement of the 1T phase and 2H phase
in one WS2 monolayer. Combined with covalent bonds in a
WS2 monolayer plane,3,12,20 MLHSs can be regulated within
the alternating 1T and 2H phases in a plane, and such
construction in a monolayer of TMDs is also rarely explored.
An atomic level schematic of MLHSs (Figure 1a) indicates that
the trigonal prismatic structure (H-phase) and octahedral
prismatic structure (T-phase) can form in TMDs according to
the different coordination modes between transition metal
atoms and chalcogenide atoms.26−28 It is documented that
semiconductor 2H-WS2 exhibits a direct band gap and strong
irradiated photoluminescence at room temperature because of
the thickness of a single atomic layer.29−32 In stark contrast,
the metallic 1T phase in WS2 shows a low work function and
low contact resistance.26,33,34 Thus, when MLHSs are
irradiated with a 532 nm laser, there is a transverse periodic
distribution of distinctive photoluminescence in a 2D
monolayer, as shown in Figure 1b. In addition, the stronger
photoluminescence occurring in the regions of the 2H-WS2
phase in MLHSs is observed because the electrons are
localized in the 2H-phase regions due to the quantum
confinement effect and the potential well in MLHSs. Density
functional theory (DFT) calculations were performed to
further probe the presence of the potential well in MLHSs.
There are potential differences between the different phases as
known from previous reports.35−38 An approximate model of
1T-2H-1T alternating nanoribbons in Figure 1c shows the

formed potential wells in 2D MLHSs (Figure 1d). Thus, the
theoretical calculation implies that the alternating 1T and 2H
phases can produce a potential well in MLHSs.
In Figure 1, we have shown that the photoluminescence can

be alternatingly distributed in space in a MLHS monolayer,
which can be further confirmed by spectroscopy images. Figure
2 shows the optical microscopy photographs and PL intensity
maps of various 2D MLHSs. Figure 2a displays a microscopy
image of a WS2 monolayer with another stacked bilayer in the
center. We marked the layered WS2 on a SiO2/Si substrate
with triangular regions using blue dashed lines and the bilayer
in the center with a green dashed line. When this WS2

Figure 1. (a) Schematic showing two-dimensional MLHSs with 1T/2H-WS2. (b) Schematic illustration of 1T/2H-WS2 MLHSs irradiated
with a 532 nm laser. (c) Atomic model and (d) potential distributions of an alternating lateral 1T-2H-1T construction in a WS2 monolayer
simulated with density functional theory.

Figure 2. Various 2D MLHS configurations in different WS2
monolayers. (a) Optical microscopy photographs in monolayer
WS2 with bilayer stacking on a SiO2/Si substrate. (b) PL intensity
mapping of the lateral homosuperlattices (LHSs) in (a). The green
dashed triangle region in (a) and (b) is a bilayer and the region
between the blue and green dashed triangles is a monolayer, while
the highlighted region in (b) is 2H-WS2. (c) Optical microscopy
photographs of a WS2 monolayer. (d) PL intensity mapping of
MLHSs composed of 1T- and 2H-phase WS2 on a SiO2/Si
substrate.
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monolayer was irradiated with a 532 nm laser, anomalous PL
images were obtained, as shown in Figure 2b. Compared with
the regions marked in green (i.e., the stacked bilayer) in Figure
2a,b, we found that the bilayer region hardly exhibits a PL
response. Such a phenomenon results from the bilayer.39,40

Obvious PL only appears between the blue dashed lines and
the green dashed line. Interestingly, the monolayer region
shows an arranged PL distribution, which is different from the
PL behaviors in monolayer WS2.

29,41 As demonstrated in
Figure 1, we believe that there is an alternating arrangement of
1T and 2H-WS2 phases in the monolayer regions in Figure 2a.
Moreover, the 2H-phase regions lie between two 1T-phase
regions, which leads to such an arranged PL image due to the
quantum confinement effect.39,42

To exclude the effect of the varying layer numbers, the WS2
monolayer was also investigated, as shown in Figure 2c,d. No
covered layer was observed in the WS2 monolayer in the
optical microscopy image in Figure 2c, while the PL intensity
shows a similar arrangement in Figure 2d. The WS2 MLHS
involves five junctions where the bright regions should be 2H
phases and the dark regions should be 1T phases. These results
indicate that the triangle is positioned either on top of the
superlattice or on the side and does not affect the formation
and photoluminescence of such 2D MLHSs. This periodic and
localized PL characteristic is dominated by the bilayer stacking,
missing edge and edge defects of monolayer WS2. Both the PL
data and the theoretical calculations indicate that only the
MLHS configuration results in such a PL arrangement in a
single WS2 monolayer, while ongoing exploration will focus on
observing and controlling the microstructures in MLHSs.
To further verify the MLHS with 1T/2H-WS2, we

subsequently utilized Raman spectroscopy and PL spectrosco-
py to analyze the changes in this WS2 monolayer. Figure 3a

presents an optical micrograph of 2D MLHS with 1T/2H-
WS2, and the two layers are indistinguishable. It is worth
mentioning that there is no observable optical contrast
difference or thickness variation (e.g., monolayer and bilayer)
in the homosuperlattice, as shown in Figure 2a. This result
affirms that WS2 is homogeneous without a hybrid
structure.36,43 To delve more into the details, micro-PL spatial
mapping is used to further investigate this homosuperlattice
structure. Parts b and c of Figure 3 show the characteristic PL
spectra and intensity map, respectively. In Figure 3c, the
periodic PL image results from the regions of the alternating
1T and 2H phases that exist adjacently in monolayer WS2. In
addition, the corresponding PL spectra imply that there are
obvious variations at positions A−F, as shown in Figure 3b.
Furthermore, the special periodic localized photoluminescence
of the MLHS in the 2D plane and the junction regions of the
1T and 2H phases exhibit abrupt boundaries, as can be seen
from Figure 3c. The semiconducting 2H phase has a higher PL
intensity, while the 1T phase has no obvious PL, as known
from previous reports.18 Thus, we observed and distinguished
the difference between the 1T and 2H phases of WS2 by the
variations in the relative PL intensities in Figure 3c. In our
cases, the clear contrast in the PL map provides further
evidence of the existence of 1T and 2H phases and the
formation of a homosuperlattice. Moreover, PL can provide a
way to directly observe 2D MLHS with 1T/2H-WS2 without
any assistance from other measurement techniques. Figure 3d
displays the changes in PL intensities at the different regions
marked as A−F in Figure 3c. Strong PL intensities (in red) and
peak wavelengths (in black) are found in regions A, C, and E,
while there are no obvious PL intensities in regions B, D, and
F. The red line profile (i.e., PL intensities) shows that the PL
intensities alternately change from positions A to F, and the C

Figure 3. Raman and photoluminescence characterizations of a 2D MLHS with 1T/2H-WS2 on a SiO2/Si substrate. (a) Optical microscopy
image. (b) Photoluminescence spectra of the A−F positions indicated in (c). (c) PL intensity map. (d) PL peak intensity profile (red) and
the PL peak wavelength profile (black) from positions A to F in (b). (e) Raman intensity map corresponding to the PL map in (c). (f)
Raman spectra of the 1T phase and 2H phase in monolayer WS2.
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position has the strongest PL intensity. Additionally, the black
line profile (i.e., PL peak wavelength) does not obviously
change and maintains a stable value of approximately 630 nm
from points A to F.
In addition to PL mapping, Raman spectra were obtained to

check and demonstrate that different phases existed in the WS2
monolayer with alternating 1T and 2H phases.33,36,43,44 Figure
3e shows the Raman intensity map using the WS2 E2g

1 mode at
350 cm−1, revealing that the 1T and 2H regions had a regular
variety of E2g

1 intensities.45 It is difficult to distinguish the 1T
and 2H phases from the associated WS2 E2g

1 and A1g position
maps (seen in Supporting Information, Figure S1c,d), which
insinuates that the flake is homogeneous. As documented
elsewhere,34,46 the J1 mode in Figure 3f may be from the 1T
phase, which can suggest the difference between the 1T and
2H phases. In addition, the regions marked by the yellow
dashed circles show the contrast of the small WS2 triangle,
revealing weak PL emission, which mainly results from the 1T
phase. The regions marked by red dashed circles are obvious in
the Raman mapping (Figure 3e) but difficult to observe in the
PL image (Figure 3c). This result indicates that such fantastic
PL emission only occurs in a WS2 monolayer with alternating
1T and 2H phases although other advanced measurements
would also help observe and understand them. However, there
are still a few alternating variations between B, D, F and A, C,
E, implying that the 1T and 2H phases are positioned in the
different domains separately rather than existing as an amalgam
in one domain (see Supporting Information, Figure S1a).43

Neutral excitons and negative trions are often exploited to
understand the fundamental behavior behind the PL emission
in layered WS2 materials. The behaviors of excitons generally
dominate the optical properties and light emission of 2D
semiconductor materials.31,32,42,43 Figure 4a outlines the

schematic illustration of the neutral exciton and negative
trion in the WS2 monolayer. The atomic layer thickness causes
a strong Columbic interaction between electrons and holes in
the WS2 monolayer.12,30 Both neutral excitons and charged
excitons exist with a high exciton density in monolayer WS2.

47

Figure 4b further shows the Lorentz fitting of PL spectra at the
positions marked as A−F in Figure 3c. Two peaks for neutral

excitons and negative trions were used to subsequently
understand the distinctive PL behaviors by the Lorentz fitting
of PL spectra.45,47−50 In particular, the contribution of trions in
the PL in the 2H regions is greater than that in the 1T regions,
which also verifies the essential difference between the 2H
(semiconductor) phase and 1T (metal) phase.26 In 1T/2H-
WS2 MLHSs, the PL intensity ratio of trions and excitons
varies regularly with the alternating 1T and 2H phases, as
shown in Figure 4c, implying the existence of completely
different electronic states and the formation of MLHSs. Trions
typically appear in the 2H phase, and there are more electrons
that combine with excitons in that phase than in the 1T phase
because of the direct band gap and associated inevitable
defects;34,47,49−51 thus, an obvious PL emission in the 2H
phase is observed.
In addition, we discovered that the binding energy at

positions B, D, and F is larger than that at positions A, C, and
E when the binding energy of trions, defined as the peak
energy difference between the exciton and trion, is calculated
(Supporting Information, Figure S2c). Therefore, the charges
are confined excitons in the plane, and the exciton binding
energy is relatively large.47−49 A higher binding energy suggests
a higher carrier density in monolayer TMDs, as demonstrated
elsewhere.26,42,45,48 The higher carrier density is related to the
formation of the 1T phase.27,28,33,34

We further used synchronous measurements of the surface
morphology and surface potential to identify and understand
MLHSs and their optical behaviors. The in situ atomic force
microscopy (AFM) topography in Figure 5a displays

Figure 4. PL profiles of excitons and trions in a 2D MLHS with
1T/2H-WS2. (a) Schematic diagram of excitons and trions in WS2.
(b) Lorentz fitting for excitons and trions in the PL curves in
Figure 3b. (c) PL intensity ratio (trions/excitons) at positions A−
F in the MLHSs in Figure 3c.

Figure 5. Surface morphology (AFM) and surface potential
(KPFM) characterizations of 2D MLHSs with 1T/2H-WS2. (a)
Synchronous AFM and (b) KPFM images of the MLHS in Figure
3a. The surface potential interface is marked by a white dashed
triangle. The contact potential difference (CPD) line profile is
marked with a yellow line across the 2H-1T interface. (c) Energy
band diagram for the 1T/2H-WS2 superlattices in Figure 3a. (d)
Synchronous AFM and (e) KPFM images of the 2D LHS in Figure
2a.
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monolayer WS2 with a thickness of approximately 0.92 nm
according to the white height line profile. In addition, the
uniform height profile in the green line further reveals the
formation of seamless 2D MLHSs.30,33,41,52 Along the white
dashed triangle, we observe that there is an obvious contact
potential difference (VCPD) or work function difference
between the 1T and 2H phases in the corresponding Kelvin
probe force microscopy (KPFM) image (Figure 5b). The
surface potential of the 1T region is higher, and the surface
potential difference is approximately 48 mV across the
interface of the 1T and 2H domains, which is in congruence
with the VCPD reported in other literature.32,36,43 Hence, charge
transfer might occur from 1T regions to 2H regions, suggesting
electronic doping. More electrons in the 2H regions are
localized in the potential well formed by the MLHS structure
with 1T/2H-WS2. Thus, it is more likely to form trions and
compound emission in the well.45,48,49,53 Therefore, the PL
emission is preferably produced in the 2H regions of MLHSs,
while the PL intensity is higher than that previously observed
in pure 2H-WS2.

30,41,43 All of these results are in synchrony
with the measurements and analyses above.
Figure 5c shows the energy band diagram for the 1T/2H-

WS2 lateral superlattice. The work function in the KPFM
characterization is sensitive to the Fermi level of 2D
materials.54 Regarding the monolayer WS2 with a stacked
bilayer region in Figure 5d,e, the surface potential difference is
merely approximately 18 mV between the WS2 monolayer and
bilayer. The AFM and KPFM characterizations further
demonstrate that the periodic PL in monolayer WS2 originates
from MLHSs with alternating 1T and 2H phases and is
independent of layer thickness or vertical stacking (Figure
5d,e). These investigations herald an exceptional vista of
understanding and constructing MLHSs with anomalous
optical and electronic behaviors. The analysis of PL behaviors
demonstrates a simple route for further insights into the
relationship between crystal structure and optical proper-
ties.10,16

CONCLUSIONS

We demonstrated MLHSs with alternating 1T and 2H
domains in a WS2 monolayer on a SiO2/Si substrate. Periodic
and localized PL emissions were explored through Raman
spectroscopy, photoluminescence, KPFM characterization, and
DFT calculations. The charge transport from the 1T to 2H
regions, and their subsequent localization by the potential wells
in MLHSs is responsible for the distinctive PL in 2H regions.
While the PL dynamics and formation mechanism of MLHSs
with 1T and 2H phases need more exploration, our studies
create more opportunities for better understanding the phase
engineering of a monolayer plane and for modulating the
optical or electronic behavior of 2D materials in next-
generation nanoscale optoelectronic devices.

METHODS
MLHSs were fabricated on SiO2/Si substrates by using powdered
WO3 (99.9% purity, Sigma-Aldrich) and S (99.9% purity, Sigma-
Aldrich) sources and adjusting the source temperature during a
vapor−solid growth process. All procedures were based on the
previous report.54 Briefly, AFM and KPFM images were obtained on
Veeco/DI multimode SPM, while optical microscopy was performed
on Leica DM4000M. Raman and PL spectra and mapping were
recorded on a Nanofinder 30 instrument (TII Tokyo Instruments,
Inc.). An 1800 g/mm grating for Raman and a 300 g/mm grating for

PL were used, while the measurements were performed with a 532 nm
laser (0.02 mW and 0.015 mW) at room temperature.
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